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Lattice Boltzmann Model for Free Surface Flow
for Modeling Foaming
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We present a 2D- and 3D-lattice Boltzmann model for the treatment of free
surface flows including gas diffusion. Interface advection and related bound-
ary conditions are based on the idea of the lattice Boltzmann equation. The
fluid dynamic boundary conditions are approximated by using the mass and
momentum fluxes across the interface, which do not require explicit calculation
of gradients. A similar procedure is applied to fulfill the diffusion boundary
condition. Simple verification tests demonstrate the correctness of the algo-
rithms. 2D- and 3D-foam evolution examples demonstrate the potential of the
method.

KEY WORDS: Lattice Boltzmann method; free surface flow; advection; diffu-
sion; boundary conditions; foam.

1. INTRODUCTION

In many engineering areas, especially materials science, the dynamics of
multiphase flow where one phase is a liquid and the other phase is a gas
is important. Examples are all kind of casting methods, solidification of
melts or – these are the processes we focus on – foaming processes.(1,2,3)

For many applications the dynamics of the gas can be neglected. That is,
the two-phase flow problem can be reduced to a one-phase flow problem
with free interfaces. Although the dynamics of the gas can be neglected
gas diffusion within the melt combined with bubble nucleation and bub-
ble growth is very often essential for the whole production process. This is
not only true for foaming processes where blowing agents are deliberately
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added to the melt but also for normal casting processes where gas porosity
develops during mould filling and subsequent solidification. In this paper
the lattice Boltzmann method (LBM) is applied to flows with free gas–
liquid interfaces where also gas diffusion is taken into account. We pres-
ent formalisms for interface advection and the fulfillment of the boundary
conditions within the LB formalism which are based on the kinetic inter-
pretation of the LBM. Interface advection is realized with the help of a
mass fraction variable, which is updated by recording the in- and outflow
of mass via the distribution functions. For the reconstruction of the miss-
ing distribution functions at interface cells a current procedure is applied
which provides exact control of the hydrodynamic momentum flux across
the interface. A similar procedure is applied in order to match the diffu-
sion boundary conditions. Surface tension effects and foam stabilization
are included by adjusting the locally acting gas pressure.

2. BASIC EQUATIONS

The fundamental principle of the LBM is to solve the microscopic
kinetic equation for particle distribution functions f (x, ξ , t) where (x, ξ)

are the phase space variables and t the time. It is well known that the par-
ticle velocity space ξ can be reduced to a small set of discrete velocities
{ξ i |i = 1, . . . , b} while preserving the hydrodynamic moments up to a cer-
tain order in ξ .(4) This discretization transforms the Boltzmann equation
to a discrete equation. The lattice Boltzmann equation (LBE) follows from
this discrete Boltzmann equation by an adequate space-time discretization,

fi(x + ei , t +1)=fi(x, t)− 1
τ

(
fi(x, t)−f

eq
i (x, t)

)+Fi, i =0,1, . . . , b,

(1)

where we use dimensionless lattice units and the dimensionless discrete
velocity set {ei}, the relaxation time τ , the equilibrium distribution func-
tion of the ith discrete velocity f

eq
i (x, t) ≡ f

eq
i (ρ, v), the velocity v, the

density ρ and an external force (e.g., gravity) Fi . Equation (1) is based on
the BGK-approximation where the collision term is treated by means of a
single relaxation time approximation.(5)

For the fluid dynamic problem we use the two-dimensional D2Q9-
model and the three-dimensional D3Q19-model.(6) In this paper, diffusion
is only implemented for the two-dimensional case where the D2Q4-model
is employed.(7) Figure 1 shows the respective velocity sets. The equilibrium
distribution functions for the D2Q9- and D3Q19-models(6) are defined as
follows:
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Fig. 1. Velocity sets for different LBMs: D2Q4, D2Q9 and D3Q19. Rest particles are
defined in all models but the D2Q4.

f
eq
i (ρ, v)=wjρ

[
1+3(ei · v)+ 9

2
(ei · v)2 − 3

2
v · v

]
, (2)

where j =|ei |2 and w0 = 16
36 ,w1 = 4

36 ,w2 = 1
36 for the D2Q9-model and w0 =

12
36 ,w1 = 2

36 ,w2 = 1
36 for the D3Q19-model. Numerically, the LBE is solved

in two steps, a streaming or advection step and a collision step:

Streaming f in
i (x, t)=f out

i (x − ei , t −1), (3)

Collision f out
i (x, t)=f in

i (x, t)− 1
τ

(
f in

i (x, t)−f
eq
i (x, t)

)
+Fi. (4)

During streaming (Equation (3)) all distribution functions but f0
are advected to their neighbor lattice site defined by their velocity. After
advection the particle distribution functions approach their equilibrium
distributions due to a collision step (Equation (4)). The incoming and out-
going distribution functions, i.e., before and after collision, are denoted
with f in

i and f out
i , respectively. The macroscopic density ρ and momentum

ρv in a cell are the 0th and 1th moments of the distribution functions,

ρ =
b∑

i=0

fi, ρv =
b∑

i=1

fiei . (5)

The viscosity ν follows from: ν = 1
3 (τ − 1

2 ).
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The time evolution of the distribution functions gi for the diffusion–
convection problem is given by

gi(x + ei , t)=gi(x, t)− 1
τD

(
gi(x, t)−g

eq
i (x, t)

)+ 1
4
Q for i =1, . . . ,4,

(6)

where τD is the relaxation time for diffusion and Q a source term. The
equilibrium functions for the D2Q4-model are defined as follows:

g
eq
i (c, v)= 1

4
c [1+3(ei · v)] for i =1, . . . ,4, (7)

where the velocity v is given by v =∑
i fi · ei/

∑
i fi . The concentration c

follows from

c=
4∑

i=1

gi. (8)

The diffusion constant D is given by D = 1
2 (τD − 1

2 ).

3. LBM FOR FREE INTERFACE

3.1. Free Surface and Fluid Advection

The description of the liquid–gas interface is very similar to that of
volume of fluid methods. An additional variable, the volume fraction of
fluid ε, defined as the portion of the area of the cell filled with fluid, is
assigned to each interface cell. The representation of liquid–gas interfaces
is depicted in Fig. 2.

Gas cells are separated from liquid cells by a layer of interface cells.
These interface cells form a completely closed boundary in the sense that
no distribution function is directly advected from fluid to gas cells and
vice versa. This is a crucial point to assure mass conservation since mass
coming from the liquid or mass transfered to the liquid always passes
through the interface cells where the total mass is balanced. Hence, global
conservation laws are fulfilled if mass and momentum conservation is
ensured for interface cells. The cell types and their state variables and pos-
sible state transformations are listed in Table I. Per definition, the volume
fraction ε of fluid and gas cells is 1 and 0, respectively. The fluid mass
content of a cell is denoted with M =M(x, t). The mass content is a func-
tion of the volume fraction and the density. For a gas cell the fluid mass
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Fig. 2. 2D-Representation of a free liquid–gas interface by interface cells. The real interface
(dashed line) is captured by assigning the interface cells their liquid fraction.

content M is zero whereas that of a fluid cell is given by its density ρ:
M(x, t) = ρ(x, t) for x ∈ F, i.e., M and ρ are equivalent. Fluid cells gain
and lose mass due to streaming of the fi . If interface cells are considered,
M and ρ are not equivalent and we have to account for the partially filled
state by introducing a second parameter, the volume fraction ε = ε(x, t).
The fluid mass content M, the volume fraction ε and the density ρ are
related by M(x, t)=ρ(x, t) · ε(x, t) for x ∈ I.

All cells are able to change their state. It is important to notice that
direct state changes from fluid to gas and vice versa are not possible.
Hence, fluid and gas cells are only allowed to transform into interface cells
whereas interface cells can be transformed into both gas and fluid cells.
A fluid cell is transformed into an interface cell if a direct neighbor is
transformed into a gas cell. At the moment of transformation the fluid
cell contains a certain amount of fluid mass M which is stored. During
further development the interface cell may gain mass from or lose mass
to the neighboring cells. These mass currents are calculated and lead to a
temporal change of M. If M drops below zero, the interface cell is trans-
formed into a gas cell. It is important to pronounce that mass and density
are completely decoupled for interface cells. While the density of the inter-
face cells is given by the pressure boundary conditions and fluid dynamics,

Table I. Cell Types: State Variables and Possible State Transformations

Cell type fi , gi Fluid fraction ε Gas pressure pG Change of state

Fluid F • – – → I
Gas G – – • → I
Interface I • • • → G, → F

•: defined, –: undefined.
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M is determined by the mass exchange �M with the neighboring fluid and
interface cells.

The mass exchange �Mi(x, t) between an interface cell at lattice site
x and its neighbor in ei-direction at x + ei is calculated as:

�Mi(x, t)=
⎧
⎨

⎩

0,

f out
ı̄ (x + ei , t)−f out

i (x, t),
1
2 (ε(x, t)+ ε(x + ei , t))(f

out
ı̄ (x + ei , t)−f out

i (x, t)),

x + ei ∈
⎧
⎨

⎩

G,

F,

I,
(9)

where eı̄ =−ei .
There is no mass transfer between gas and interface cells. The inter-

change between an interface and a fluid cell should be the same as that
of two fluid cells since the cell boundary is completely covered with liq-
uid. In this case, the mass exchange can be directly calculated from the
particle distribution functions. The interchange between two interface cells
is approximated by assuming that the mass current is weighted by the
mean occupied volume fraction. It is crucial to note that mass is explicitly
conserved in Equation (9):

�Mı̄(x + ei , t)=−�Mi(x, t). (10)

That is, the mass which a certain cell receives from a neighboring cell
is automatically lost there and vice versa. The temporal evolution of the
mass content of an interface cell is thus given by

M(x, t +�t)=M(x, t)+
b∑

i=1

�Mi(x, t). (11)

An interface cell is transformed into a gas or fluid cell if M < 0 or
M > ρ, respectively. At the same moment, new interface cells emerge in
order to guarantee the continuity of the interface. The initial distribution
functions of these new interface cells are extrapolated from the cells in
normal direction towards the fluid. Any undershooting or overrun of the
fluid fraction of a former interface cell is evenly distributed on the new
interface cells to ensure exact mass conservation. The mass redistribution
has only impact on M and does not change the density or the distribution
functions.
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3.2. Boundary Conditions

3.2.1. Boundary Conditions for the Navier–Stokes Equation

The boundary conditions at the interface of a fluid and a gas state
that the velocity of both is equal. In addition, the force performed by the
gas has to be balanced by the force performed by the fluid. The distribu-
tion functions at the interface have to be adapted in such a way that these
conditions are fulfilled. After streaming, only distribution functions from
fluid and interface cells are defined. Distribution functions arriving from
gas cells are not defined within interface cells (see Fig. 3, left).

In the following, a reconstruction procedure for the missing distri-
bution functions is presented where the kinetic nature of the LBM is
explicitly exploited. Our approach to fulfill the force boundary conditions
is based on a momentum exchange method which was first applied by
Ladd(9,10) to compute the fluid force on a sphere in suspension flow.
Mei et al.(11) have successfully applied a similar approach to calculate
forces for problems where curved geometries are involved. The treatment
of free interface flows within the momentum exchange method is not
known in literature and presented in the following. Our approach is very
similar to that of Chen et al.(12) who present a method to fulfill hydrody-
namic boundary conditions at curved solid surfaces.

The underlying philosophy of the reconstruction step is that we know
the gas pressure and therefrom the force exerted by the gas on the fluid.
That is, the boundary conditions are fulfilled if the force exerted by the
liquid equals the gas force. The total force is produced by the particles
crossing the interface in one time step, i.e., the particle currents from the
liquid to the gas and vice versa. Only fluid particles with appropriate
velocity, i.e., n · ei <0, will traverse the interface during the advection step.

Fig. 3. Missing distribution functions at interface cells after streaming. Left: Undefined dis-
tribution functions after streaming (broken lines). Right: Set of distribution functions with
n · ei �0 (broken lines). The normal n is determined by a marching cube algorithm [8].
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The same is true for particles originating from the gas. In this case, the
velocity of the particles must point inwards, n · ei �0 (Fig. 3, right).

Thus, the total force F exerted by the fluid on a surface element
A(x) = n · A(x) results from the momentum transported by the particles
streaming through this element during one-time step (Fig. 4),

Fα =−nβA(x)

⎡

⎣
∑

i,n·ei<0

f out
i (x, t)(ei,α −vα)(ei,β −vβ)

+
∑

i,n·ei�0

f out
i (x − ei , t)(ei,α −vα)(ei,β −vβ)

⎤

⎦ , (12)

where f out
i denotes the particle distribution functions after collision and

before advection. In Equation (12), the pure advection term is eliminated
by subtracting the interface velocity from the particle velocities. At an
interface b/2 of the b possible velocity directions point from gas to fluid
while the others point from fluid to gas. The first sum contains all known
distribution functions coming from the liquid going into the gas. The sec-
ond part contains all unknown distribution functions coming from the gas
and going into the liquid. The unknown incoming distribution functions
(n · ei � 0) have to be chosen in such a way that the boundary conditions
are satisfied, i.e., the force F must balance the gas force.

The symmetry between known and unknown distribution functions,
i.e., if fi is known fı̄ is unknown, is essential to fulfill the boundary condi-
tions. We demand force balance for opposite lattice directions. In addition,

Fig. 4. Particle currents at interface cells. The momentum transfered to the interface area
A is proportional to the number of particles which flow through it during one time step (for
simplicity v =0). Left: Outgoing particles. Right: Incoming particles.
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we make use of the fact that the forces exerted by the gas are known and
are given by the gas pressure and the velocity at the interface. Hence, the
missing distribution functions are reconstructed as

f out
i (x − ei , t)=f

eq
i (ρG, v)+f

eq
ı̄ (ρG, v)−f out

ı̄ (x, t), ∀i : n · ei �0

(13)

with the gas density ρG(t)=3pG(t) and the velocity v=v(x, t) of the inter-
face cell.

Inserting Equation (13) in Equation (12) gives:

Fα/A = −nβ

∑

i,n·ei<0

f out
i (x,t)(ei,α −vα)(ei,β −vβ)

−nβ

∑

i,n·ei�0

[
f

eq
i (ρG,v)+f

eq
ı̄ (ρG,v)−f out

ı̄ (x,t)
]
(ei,α −vα)(ei,β −vβ)

= −nβ

∑

i,n·ei�0

[
f

eq
i (ρG,v)+f

eq
ı̄ (ρG,v)

]
(ei,α −vα)(ei,β −vβ)

= −nβ

∑

i

f
eq
i (ρG,v)(ei,α −vα)(ei,β −vβ)

= −nβδαβpG

= −nα ·pG (14)

The resulting fluid pressure has the same value as the gas pressure but
with the opposite direction −n, i.e., the physical boundary condition is ful-
filled. Below, it is shown that the reconstruction algorithm works very well.
Nevertheless, the effective precision is not yet rigorously verified.

It is important to note that not only the missing distribution func-
tions are reconstructed but all distribution functions with ei ·n � 0 (see
Fig. 3, right). At first glance, part of the information seems to be dis-
regarded since some of the distribution functions coming from neighbor-
ing interface cells are not taken into account. In order to resolve this
apparent contradiction it is instructive to remind that this seemingly dis-
crepancy originally results from the treatment of the interface cells. They
are more or less treated as fluid cells with a full set of distribution func-
tions defining the fluid. This brings some kind of asymmetry into the
interface treatment since the number of unknown incoming distribution
functions is generally smaller than the number of the known. The above
procedure restores symmetry between gas and fluid since interface cells
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are sometimes treated as gas or as fluid depending on the actual inter-
face orientation. Generally, half of the set of the distribution functions is
reconstructed.

After completion of the whole set of distribution functions, the new
density ρ and velocity v can be calculated. The outgoing distribution func-
tions are calculated as

f out
i (x, t)=f in

i (x, t)−1
τ

(
f in

i (x, t)−f
eq
i (ρ, v)

)
+εi(x, t)wiρ(t)ei ·g, ∀x∈I

(15)

Similar to the volume of fluid method gravity is weighted in Equation (15)
by the volume fraction of the cell. This is the same procedure as in refs.
13 and 14.

The effect of the surface tension is treated as a local modification of
the gas pressure pG

pG(t)= 1
3
ρG(t)−2κ(t)σ −�, (16)

where ρG is the gas density and κ and σ denote the curvature and the
surface energy, respectively. The disjoining pressure � comprises the forces
which stabilize the foam structure. � is a function of the distance to the
nearest neighboring interface dint:

�(dint)=
{

c�|drange −dint|, dint <drange,

0, dint �drange,
(17)

where the magnitude and the range of the disjoining pressure are deter-
mined by the two phenomenological parameters c� and drange.

We use two different methods to determine the curvature. In 2D
a template sphere method(15) is applied which uses an extended neigh-
borhood of 25 cells to estimate the curvature. In 3D a marching cube
algorithm is used which leads to a representation of the interface by trian-
gles. The curvature κ belonging to a triangle is estimated by κ = 1

2 (δA/δV )

where δA denotes the alteration of the triangle area when its vertices are
infinitesimally shifted in normal direction. The respective volume change
is denoted by δV . The curvature of an interface cell is estimated by the
mean curvature of the triangles belonging to it.
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3.2.2. Boundary Conditions for the Diffusion–Convection Equation

The macroscopic boundary condition for the gas diffusion problem
reads

c(x)= cG
Sieverts’ law

︷︸︸︷= S

√
pG, x ∈ I, (18)

where Sieverts’ law relates the equilibrium gas concentration cG to the gas
pressure pG. Sieverts’ law is a variant of the well-known Henrys’ law and
is valid if the gas does not consist of single atoms but molecules from
two atoms like, e.g., H2. S denotes Sieverts’ constant which is a material
dependent parameter. Translating this boundary condition into the lattice
Boltzmann picture we have to demand that the incoming particle cur-
rents at interface cells (interface cells have at least one undefined gi after
streaming) add to the interface concentration,

∑

i

gin
i (x, t)= cG. (19)

The last equation can be fulfilled by demanding the distribution functions
with n · ei �0 to obey the following relation:

gin
i (x, t)=

⎧
⎨

⎩

g
eq
i (cG, v)+g

eq
ı̄ (cG, v)−gin

ı̄ (x, t), if gin
ı̄ (x, t) defined,

g
eq
i (cG, v), if gin

ı̄ (x, t) not defined.

(20)

Gas cells surrounded by interface cells built connected and closed areas of
cells which represent the bubbles. All cells belonging to one bubble share
the same information of the bubble properties, namely the interior bubble
pressure, the bubble volume and the contained amount of hydrogen gas.
Volume and amount of substance of the bubbles are changed by the liquid
flow and diffusion across the interface. The bubble pressure results from
the bubble volume and bubble gas content via the ideal gas equation.

4. VERIFICATION

In the following, verification tests are presented which concern the
fluid dynamic problem, i.e., advection of the interface and the boundary
conditions.
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4.1. Advection

As a simple test for the advection algorithm, a bubble (2D) and
a drop (3D) are moved with constant velocity v at different grid reso-
lution, i.e., different bubble and drop diameters D = 10,20,40,80. This
test completely decouples advection from the free surface problem since
the distribution functions are constant, i.e., fi =f

eq
i (v, ρ)= const. ∀i,x ∈

{F, I}. Consequently, all errors can be exclusively traced back to the advec-
tion algorithm. Figure 5 shows the 2D-bubble and 3D-drop for different

Fig. 5. Advection test. A bubble (2D, top) and a drop (3D, bottom) are advected with con-
stant velocity and different resolution along the lattice coordinates and the diagonal direction.
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velocities and directions after different translation distances. Generally, the
overall shape of the drop is maintained but with increasing distance defor-
mations get visible. These deformations are anisotropic and minimal if
advection is along the lattice axes and maximal in diagonal direction.

The accuracy of the advection of the 2D-bubble center can be inferred
from Table II giving the relative errors err of the position of the bubble
centers Rc for different resolutions as a function of the covered distance vt :

err(vt)= ‖Rc(t)− vt −Rc(0)‖
‖vt‖ . (21)

The convergence rates are about second order. The movement along
the diagonal with v = (0.04,0.04) results in relative errors which are a
factor 2 − 10 larger. In this case the convergence rates are between first
and second order. In 3D, the relative discrepancies of the drop center from
the expected value are in the range of 10−2 for D =10 and 10−3 for D =
40. The deformations are analogous to that in two dimensions.

In the following, the advection algorithm is compared with the
recoloring LB algorithm applied by Ginzburg and Steiner.(14) For that
purpose, a spherical bubble is placed on lattices with different resolutions
2n×2n, where n = 5,6,7. Initially, the bubble center is given by Rc(0) =
(2n−1,2n−1). The bubble radius is R = 7 × 2n−5. The error norm ‖err‖ is
calculated according to the following relation:(14)

‖err‖= 25−n

2

∑

α

7∑

k=1

∥∥Rα(t (k))−Rc,α −vαt
∥∥ (22)

Table II. Advection Test with Velocity v = (0.04,0)

Diameter n=0 n=1 n=2 n=3
D =10×2n D =10 D =20 D =40 D =80

err(2D) 4.48×10−3 9.25×10−4 1.29×10−4 3.5×10−5

√
err(2D,n)

err(2D,n+1)
2.2 2.67 1.92

err(4D) 4.23×10−3 1.1×10−3 1.69×10−4 3.96×10−5

√
err(4D,n)

err(4D,n+1)
1.96 2.55 2.06

The relative error err of the position of the bubble center is given for different distances and
resolutions n.
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Table III. Error Norm ‖err‖ of a 2D-bubble

Advected by a Uniform Velocity Field [15]

(vx, vy) 32×32 64×64 128×128

(0.10, 0.00) 0.0267 0.0053 0.0012
(0.10, 0.10) 0.0771 0.0406 0.0104
(0.05, 0.10) 0.0608 0.0243 0.0064

with t = 10 · k · 2n−5 and k = 1, . . . ,7. The error for our algorithm
(Table III) remains significantly below that reported by Ginzburg and
Steiner.(13,14) However, a strict comparison is not possible, since our
analysis is only two-dimensional.

4.2. Boundary Conditions

Two examples, a capillary wave in 2D and a rising bubble in 3D, are
employed to verify the boundary conditions. Verification of the bound-
ary conditions can not be carried out without advection. Thus, inaccu-
racies are always the result of a superposition of inaccuracies within the
advection algorithm and the treatment of the free boundary. Nevertheless,
the last paragraph has shown that advection works rather well. Therefore,
strong deviations from analytical results are expected to be mostly due to
inaccuracies in the boundary conditions.

4.2.1. Capillary Wave

A small sinusoidal disturbance of a fluid–gas interface is considered.
Such a disturbance is oscillating around its mean value due to capillary
forces. It is eventually damped down by internal friction. If damping is
small there are analytical solutions for the long wavelength limit:(16)

y(t)=y(0)+A0 cos(ωt) · e−κt (23)

with y as interface position in y-direction, A0 as initial amplitude. The
frequency ω and the damping factor κ are given by

ω=
√

k3σ , κ =2k2ν, (24)

where k =2π/λ denotes the wave number and λ the wavelength.
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Fig. 6. Capillary wave. Oscillation of a point at the gas–fluid interface driven by surface
tension (lattice: 100 × 100, g = 0, σ = 0.01, τ = 0.52). Full line: Numerical result, broken line:
Analytical result with the frequency reduced by 4%.

Figure 6 shows the oscillation of a capillary wave. The deviation of
the oscillation frequency from the analytical value is about 4% for the
100 × 100 lattice. The error decreases linearly with increasing resolution.
The damping factor κ is perfectly reproduced. Similar verification exper-
iments for alternative multiphase LB models as in ref. 17 show the same
or even larger deviations from the theoretical predictions. The shape of
the sinusoidal wave is maintained during many oscillations, even when the
amplitude falls below the cell size.

4.2.2. Rising Bubble

A single gas bubble within an infinite fluid is considered. The bubble
rises due to gravity and eventually reaches a stationary velocity v where
the drag force balances buoyancy. If the deformation of the bubble is neg-
ligible, the stationary rising velocity follows from force balance between
the dragging force given by Stokes´ law and buoyancy,(16)

v = gR2

3ν
, (25)

where R is the bubble radius, ν the kinematic viscosity and g the gravity
constant.

A system with 100 × 100 × 160 cells is considered. In addition, peri-
odic boundary conditions in x- and y-direction are applied. The following
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parameters are used: R = 8, σ = 2 × 10−2, τ = 1.46, g = 10−4. After 10000
time steps and a distance of 60 lattice units the numerical velocity is about
0.00653 whereas the theoretical velocity is 0.00667. The relative differ-
ence is about 2%. Other parameter combinations and bubble radii lead
to similar results. If the bubble radius is R = 4 and τ = 0.74 the bubble
velocity after 10.000 time steps is 0.006714. In this case the relative error
between theoretical and numerical result reduces to 0.7%. We suppose that
the larger part of the difference between the theoretical and the numerical
velocity can be traced back to the finite system size, i.e., Equation (25) is
not the exact solution for a finite system.

5. APPLICATION

The applications for our LBM for free surface flow are foaming
processes, especially foaming of metals. Global phenomena like drainage,
topological rearrangements, avalanche-like rearrangements and avalanche-
like coalescence processes emerge from our model only without further
assumptions. Figure 7 shows the growth and the subsequent aging of a
foam. Other results of 2D-modeling of foaming processes including gas
diffusion can be found in refs. 2 and 18.

In 3D, diffusion is not yet included. Nevertheless, foaming can be
modeled by assuming that the bubble gas content increases by a certain
amount in each time step which is proportional to the respective bubble
interface area. An example is depicted in Fig. 8. A large number of bub-
bles starts growing within the fluid. The disjoining pressure delays bubble
coalescence but does not completely prevent it. Consequently, the number

Fig. 7. Foam expansion and subsequent aging. Gravity leads to a pronounced drainage
zone at the bottom. (ν = 0.42, σ = 0.01,D = 0.075, g = 3 × 10−5,Q = 5 × 10−5 as long as the
number of time steps is smaller than 50000, S =5×10−4, c� =3×10−3, total number of time
steps: 100000, lattice: 300×900.)
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Fig. 8. 3D-Foam. Initial number of bubbles is 1000, final number is 57. The bubbles grow
and coalescence occurs. The disjoining pressure � stabilizes the foam and eventually a polyg-
onal structure develops. (System size: 120 × 120 × 140, τ = 0.65, g = 0, σ = 0.01, c� = 0.006,
total number of time steps: 73000.)

of bubbles decreases with increasing gas volume. At the end, a polygonal
foam structure has developed.

6. CONCLUSIONS

In this work we propose a LB scheme to deal with free surface flows.
This method can be regarded as a surface capturing method. The liquid
is confined by a completely closed layer of interface cells characterized by
an additional state variable, the volume fraction of fluid. The movement
of the surface and the fulfillment of the pressure boundary conditions
is modeled by using the mass and momentum fluxes across the interface.
The calculation of the fluxes is based on the particle distribution functions.
This current based procedure allows control of the hydrodynamic fluxes
across the interface without explicit calculation of gradient information.
A similar procedure is applied to fulfill the diffusion boundary condition.

The proposed scheme is robust, stable, and easy to implement. Sim-
ple verification tests demonstrate the correctness of the algorithms. It is
successfully applied to the simulation of foam evolution problems.
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